
1

Content Review Session
Week 2

Domain 1: Data Ingestion and
Transformation

A W S P A R T N E R C E R T I F I C A T I O N R E A D I N E S S

OPTIONAL AWS Skill Builder Subscription

The Skill Builder subscription provides access to official AWS Certification practice exams, self-paced digital training

content including open-ended challenges, self-paced labs, and game-based learning. Please note, the Skill Builder

subscription is not required for this Accelerator program.

Special features include:

• 600+ digital courses

• Learning plans

• 10 Practice Question Sets

• AWS Cloud Quest (Foundational)

Free digital training
LINK HERE

Individual subscription
LINK HERE

Everything in free digital training, plus:

• AWS Cloud Quest (Intermediate - Advanced)

• 3 AWS Certification Official Practice Exams

• Enhanced Exam Prep Courses

• Unlimited access to 1000+ hands-on labs

• AWS Jam Journeys (lab-based challenges)

• AWS Digital Classroom (Annual only)

Individual subscriptions are priced at

$29 USD per month (Flexibility to

cancel anytime) or $449 USD per year.

Access 65
Data Engineer -

Associate Practice
Exam Questions
with feedback on

your answer choices
• AWS Certification Official Practice Exams

https://explore.skillbuilder.aws/learn/catalog
https://explore.skillbuilder.aws/pages/59/subscriptions?trk=e6d86b22-90b3-487c-bac9-3603075dbf69&sc_channel=el
https://explore.skillbuilder.aws/learn/course/external/view/elearning/18609/exam-prep-official-pretest-aws-certified-data-engineer-associate-dea-c01-english

3

Today’s Learning
Outcomes

During this session, we will cover:

• Performing data ingestion

• Transforming and processing data

• Orchestrating data pipelines

• Applying programming concepts

Domain 1: Data Ingestion
and Transformation
Perform data ingestion

A W S P A R T N E R C E R T I F I C A T I O N R E A D I N E S S

Perform data ingestion

Knowledge of:

• Throughput and latency characteristics for

AWS services that ingest data

• Data ingestion patterns (for example,

frequency and data history)

• Streaming data ingestion

• Batch data ingestion (for example, scheduled

ingestion, event-driven ingestion)

• Replayability of data ingestion pipelines

• Stateful and stateless data transactions

Skills in:

• Reading data from streaming & batch sources

• Implementing appropriate configuration options for

batch ingestion

• Consuming data APIs, setting up event

• Setting up schedulers by using Amazon EventBridge,

Apache Airflow, or time-based schedules for jobs and

crawlers

• Calling a Lambda function from Amazon Kinesis

• Creating allowlists for IP addresses to allow connections

to data sources

• Implementing throttling and overcoming rate limits •

Managing fan-in and fan-out for streaming data

distribution

Data Analytics Overview on AWS

Data Ingestion Data LakeData Processing

Amazon EMR

Real time

Amazon Kinesis

Data/

Amazon Kinesis

Video Streams

Amazon Managed

Streaming for Kafka

Batch

Amazon

AppFlow

Amazon Kinesis

Data Firehose

AWS Glue

Batch

AWS Lambda

Interactive

AWS Glue

DataBrew

AWS Data

Exchange

Storage

Amazon S3 /

Amazon S3 Glacier
AWS Lake

Formation

Setup, Catalog,

and Security

AWS Glue

Data Catalog

Amazon Redshift +

Analytics Workbench

Amazon EMR

Amazon Athena

Query Engine

Data Analytics

QuickSight

Visualization Search

Amazon

Elasticsearch

Service

• Audio, video, web clickstreams,

app log, devices, social media

• Data cleaning, validation, enrichment

& transformation

• Centralized repository for all structured

& unstructured data

• Role-based access and ownership for

data lake objects

• Lake house approach; minimal data moves

• Personalized search experience across applications,

websites

Use
Cases

Batch and Stream Processing Architectures

Streaming analytics Batch analytics

Scope

Filter most recent event (stateless) or, over a

specified time window (stateful), aggregate

counts, rolling metrics

Query or processing over the entire dataset

Size
Individual events or microbatches consisting of

fewer records
Large batches of data

Performance
Results required in milliseconds

to seconds
Latencies in minutes to hours are acceptable

Stream Processing on AWS

Kinesis Data Firehose from Kinesis Data Streams, Amazon CloudWatch, etc.

Amazon MSK Connect for sink from to Amazon MSK

AWS Lambda

AWS Glue

Custom consumers using stream storage-specific SDKs/Client Library

Amazon EMR

Amazon Kinesis Data Analytics and KDA Studio (both MSK and Kinesis Data Steams)

Streaming data options on AWS

AWS provides several options to work with real-time data streaming:

• Amazon Kinesis Data Streams is a scalable and durable real-time data streaming service that can

continuously capture gigabytes of data per second from hundreds of thousands of sources.

• Amazon Data Firehose captures, transforms, and loads data streams into AWS data stores for near real-

time analytics with existing business intelligence tools with just a few clicks.

• Amazon Managed Service for Apache Flink transforms and analyzes streaming data in real time with

Apache Flink, an open-source framework and engine for processing data streams.

• Amazon Managed Streaming for Apache Kafka is a fully managed service that makes it easy for you to

build and run applications that use Apache Kafka to process streaming data.

Choosing the right streaming service for your use case

Attribute Apache Kafka MSK Kinesis Streams

Ease of use Advanced setup required Get started in minutes Get started in minutes

Management Overhead High
Low (Amazon MSK Serverless) to

Medium (Amazon MSK Provisioned)
Low

Scalability Difficult to scale Scale in minutes with one click Scale in seconds with one click

Throughput Very large Very large
Scale with Kinesis Data Streams

on-demand

Infrastructure You manage AWS manages AWS manages

Open-sourced? Yes
Yes (managed service for Apache

Kafka)
No

Latency Low Lowest
Low (70ms with Enhance Fan

Out)

Amazon Kinesis Data Streams

Amazon Kinesis

Data Analytics

Amazon EC2

AWS Lambda

Input
Output

Spark on Amazon EMR

Amazon Kinesis

Data Streams

Capture and send data Ingest and store data

streams for processing

Build custom, real-time

applications

Analyze streaming data

using BI tools

Amazon Data Firehose

Amazon Data

Firehose
Input

Output

Splunk

Amazon Redshift

Amazon S3

Amazon

OpenSearch Service

Capture and send data Prepares and loads data

continuously to the

selected destinations

Durably store the data for analytics

Analyze streaming data

using analytics tools

Choosing the right service for your use case

Characteristics Amazon Kinesis Data Streams Amazon Data Firehose

Processing time As fast as 70 milliseconds after ingestion Between 60–900 seconds

Stream storage and

duration

In shards, default 24 hours and up to 365

days

Max buffer size 128 MB and max time 900

seconds

Data transformation and

conversion
None Uses AWS Lambda and AWS Glue

Data producer
Amazon Kinesis Agent, applications using Amazon Kinesis Producer Library (KPL), AWS

SDK for Java, Amazon CloudWatch Logs and CloudWatch Events, AWS IoT

Data consumer

AWS Lambda, Amazon Kinesis Data

Analytics, Amazon Kinesis Data Firehose,

Applications using the Kinesis Client

Library (KCL) and SDK for Java

AWS Lambda, Amazon Kinesis Data Analytics,

and Kinesis Data Firehose, apps using the KCL

and SWK for Java, Amazon S3, Amazon

Redshift, Amazon ES, Splunk, and Amazon

Kinesis Data Analytics

Data compression None gzip, Snappy, Zip, or no data compression

Using AWS Lambda with Amazon Kinesis Data Streams

Producer

Add shards to scale

Shard 1

Shard 2

Shard 3

Amazon Kinesis

Shard N

AWS Lambda

Lambda function

Lambda function

Lambda function

Lambda function

Pollers

Scales automatically
Amazon

Redshift

Amazon S3

16

Resharding an Amazon Kinesis Data Stream

Resharding enables you to increase or decrease the number of shards in a stream in order to adapt to changes in the rate of data flowing

through the stream. There are two types of resharding operations: shard split and shard merge.

• In a shard split, you divide a single shard into two shards – to increase the capacity (and cost) of your stream.

• In a shard merge, you combine two shards into a single shard – to reduce the cost (and capacity) of your stream.

One approach to resharding could be to split every shard in the stream—which would double the stream's capacity. However, this might

provide more additional capacity than you actually need and therefore create unnecessary cost.

Example: Using Amazon Kinesis to monitor IoT devices

IoT sensors AWS IoT Amazon RDS

MySQL DB

instance

Kinesis

Data Streams

Kinesis

Data Analytics

Lambda function

Compute avg. temp.

every 10 secondsIngest sensor data
Persist time series data

aggregations

Amazon

CloudWatch

Example: Stream Processing Architecture on AWS

Amazon

Athena
Amazon

S3
Sensor data

Streaming

collection

Serving

layer

raw data

Stream processing

layer

filtered data

Data queries Data

visualization

Amazon

QuickSight
Amazon Data

Firehose

Amazon

Kinesis Data

Analytics

Amazon Data

Firehose

Amazon DynamoDB Streams

Domain 1: Data Ingestion
and Transformation
Transform and Process data

A W S P A R T N E R C E R T I F I C A T I O N R E A D I N E S S

Transform and process data

Knowledge of:

• Creation of ETL pipelines based on business

requirements

• Volume, velocity, and variety of data (for

example, structured data, unstructured data)

• Cloud computing and distributed computing

• How to use Apache Spark to process data

• Intermediate data staging locations

Skills in:

• Optimizing container usage for performance

• Connecting to different data sources

• Integrating data from multiple sources

• Optimizing costs while processing data

• Implementing data transformation services based

on requirements

• Transforming data between formats

• Troubleshooting and debugging common

transformation failures and performance issues

• Creating data APIs to make data available to other

systems by using AWS services

What is ETL (Extract Transform Load)?

Extract, transform, and load (ETL) is the process of combining data from multiple sources into a large,

central repository called a data warehouse. ETL uses a set of business rules to clean and organize raw data

and prepare it for storage, data analytics, and machine learning (ML).

Why is ETL important?

Organizations today have both structured and unstructured

data from various sources including:

• Customer data from online payment and customer

relationship management (CRM) systems

• Inventory and operations data from vendor systems

• Sensor data from Internet of Things (IoT) devices

• Marketing data from social media and customer feedback

How does ETL work?

Extract, transform, and load (ETL) works by moving data from the source system to the destination system

at periodic intervals. The ETL process works in three steps:

• Extract the relevant data from the source database

• Transform the data so that it is better suited for analytics

• Load the data into the target database

What is data extraction?

In data extraction, extract, transform, and load (ETL) tools extract or copy raw data from multiple sources

and store it in a staging area.

Data extraction commonly happens in one of the three following ways.

Update notification
• In update notification, the source system notifies you when a data record changes. You can then run the extraction

process for that change.

Incremental extraction
• In this case, the system checks for changes at periodic intervals, such as once a week, once a month, or at the end of a

campaign. You only need to extract data that has changed.

Full extraction
• This extraction method requires you to keep a copy of the last extract to check which records are new. Because this

approach involves high data transfer volumes, we recommend you use it only for small tables.

What is data transformation?

In data transformation, extract, transform, and load (ETL) tools transform and consolidate the raw data in

the staging area to prepare it for the target data warehouse.

Basic data transformation

• Basic transformations improve data quality by removing errors, emptying data fields, or simplifying data. Examples of

these transformations are:

Data cleansing
Data cleansing removes errors and maps source data to the target data format. For example, you can map empty

data fields to the number 0, map the data value “Parent” to “P,” or map “Child” to “C.”

Data deduplication
Deduplication in data cleansing identifies and removes duplicate records.

Data format revision
Format revision converts data, such as character sets, measurement units, and date/time values, into a consistent

format. For example, a food company might have different recipe databases with ingredients measured in kilograms

and pounds. ETL will convert everything to pounds.

What is data loading?

In data loading, extract transform, and load (ETL) tools move the transformed data from the staging area into the target

data warehouse. For most organizations that use ETL, the process is automated, well defined, continual, and batch driven.

Two methods for loading data are below:

Full load

In full load, the entire data from the source is transformed and moved to the data warehouse. The full load usually takes

place the first time you load data from a source system into the data warehouse.

Incremental load

In incremental load, the ETL tool loads the delta (or difference) between target and source systems at regular intervals.

There are two ways to implement incremental load:

Streaming incremental load
If you have small data volumes, you can stream continual changes over data pipelines to the target data warehouse.

When the speed of data increases to millions of events per second, you can use event stream processing to monitor

and process the data streams to make more-timely decisions.

Batch incremental load
If you have large data volumes, you can collect load data changes into batches periodically. During this set period of

time, no actions can happen to either the source or target system as data is synchronized.

Using AWS Glue to process your ETL jobs

AWS Glue can run your extract, transform, and load (ETL) jobs as new data arrives. For example, you can

configure AWS Glue to initiate your ETL jobs to run as soon as new data becomes available in Amazon

Simple Storage Service (S3).

Data sources and streams for AWS Glue

• AWS Glue can integrate with more than 80 data sources on AWS, on premises, and on other clouds, such as:

• Amazon Aurora, Amazon RDS for MySQL, Oracle, PostgreSQL, or SQL Server

• Amazon Redshift, Amazon DynamoDB, Amazon S3

• MySQL, Oracle, Microsoft SQL Server, and PostgreSQL

• AWS Glue also supports data streams from Amazon Managed Streaming for Apache Kafka (Amazon MSK),

Amazon Kinesis Data Streams, and Apache Kafka.

JDBC or ODBC connections across AWS Services

Many AWS services support integrated AWS-service-to-AWS-service data connectivity

• If you have a need to connect to data outside of a native AWS service (i.e. to on-premises data), there are other data

connection options such as ODBC and JDBC:

• ODBC (Open Database Connectivity) is a standard API that allows applications to connect to various databases

using a uniform interface. ODBC is widely supported by various DBMS, including Microsoft SQL Server, Oracle,

MySQL, PostgreSQL, and many others.

• JDBC (Java Database Connectivity) is a Java-based API that provides a standardized way for Java applications to

connect to databases.

Example AWS Services supporting ODBC or JDBC connections

Amazon Redshift, Amazon Athena
• Supports ODBC and JDBC connections

AWS Glue
• Natively supports JDBC connections

Build an ETL pipeline with Amazon S3 and AWS Glue

• This pattern below shows how to load incremental data changes from Amazon S3 into Amazon Redshift by using

AWS Glue, performing extract, transform, and load (ETL) operations.

• The source files in Amazon S3 can have different formats, including comma-separated values (CSV), XML, and JSON

files. This pattern describes how you can use AWS Glue to convert the source files into a cost-optimized and

performance-optimized format like Apache Parquet.

Orchestrate data pipelines

Knowledge of:

• How to integrate various AWS services to

create ETL pipelines

• Event-driven architecture

• How to configure AWS services for data

pipelines based on schedules or

dependencies

• Serverless workflows

Skills in:

• Using orchestration services to build workflows

for data ETL pipelines

• Building data pipelines for performance,

availability, scalability, resiliency, and fault

tolerance

• Implementing and maintaining serverless

workflows

• Using notification services to send alerts

Why orchestrate data pipelines on AWS?

AWS data orchestration services provide the scalability, reliability, and availability needed to successfully

manage your data processing on AWS.

ETL workflows often involve orchestrating and monitoring the execution of many sequential and parallel

data processing tasks.

Simplifying ETL Workflow Management on AWS

• AWS managed orchestration services such as AWS Step Functions and Amazon Managed Workflows for

Apache Airflow (MWAA) are managed workflow orchestration services that help simplify ETL workflow

management that involves a diverse set of technologies.

AWS Step Functions as a data orchestration tool

Depending on your data processing needs, Step Functions directly integrates with other data processing

services provided by AWS, such as AWS Batch for batch processing, Amazon EMR for big data processing, AWS

Glue for data preparation, Athena for data analysis, and AWS Lambda for compute.

AWS Step Functions with AWS analytics services examples

• You can use AWS Step Functions and the Amazon Redshift Data

API together to run an ETL/ELT workflow that loads data into an

Amazon Redshift data warehouse

• You can also integrate Amazon EMR and AWS Step Functions

together (example on the right)

AWS Step Functions workflow types

With AWS Step Functions you can process data faster using parallel transformations or dynamic parallelism,

and it lets you easily retry failed transformations, or choose a specific way to handle errors without the need

to manage a complex process.

Step Functions has two workflow types:

• Standard Workflows have exactly-once workflow transformation, and can run for up to one year.

• Express Workflows have at-least-once workflow transformation, and can run for up to five minutes.

Which workflow type to use?

• Standard Workflows are ideal for long-running, auditable workflows, as they show execution history

and visual debugging.

• Express Workflows are ideal for high-event-rate workloads, such as streaming data processing.

ETL pipeline orchestration with AWS Step Functions

• This pattern below describes a serverless extract, transform, and load (ETL) pipeline to validate, transform, compress,

and partition a large CSV dataset for performance and cost optimization.

• The pipeline is orchestrated by AWS Step Functions and includes error handling, automated retry, and user notification

features.

• When a CSV file is

uploaded to an Amazon

Simple Storage Service

(Amazon S3) bucket

source folder, the ETL

pipeline starts to run.

Serverless event-driven workflow example

Here’s an AWS Glue workflow that listens to S3 PutObject data events captured by AWS CloudTrail.

This workflow is configured to run when five new files are added or the batching window time of 900 seconds

expires after first file is added. The following diagram illustrates the architecture.

The flow on the left would follow these steps:

1. Create an AWS Glue workflow with a starting

trigger of EVENT type and configure the batch

size on the trigger to be five and batch window

to be 900 seconds.

2. Configure Amazon S3 to log data events, such

as PutObject API calls to CloudTrail.

3. Create a rule in EventBridge to forward the

PutObject API events to AWS Glue when they

are emitted by CloudTrail.

4. Add an AWS Glue event-driven workflow as a

target to the EventBridge rule.

5. To start the workflow, upload files to the S3

bucket.

Data pipelines on AWS

An efficient and well-designed data integration pipeline is critical for making the data available and trusted

amongst the analytics consumers.

Here are some considerations to review when designing data pipelines:

Factor AWS Glue Workflow AWS Step Function
Amazon Managed Workflow for

Apache Airflow (MWAA)

Use case
Suitable when your pipeline

consists of mostly AWS Glue jobs

and crawlers.

Suitable when there is a need to

integrate with different services,

including AWS Lambda, SSM, and so

on.

Compatible with open-source Airflow

and suitable when you want to reuse

existing Airflow assets.

Infrastructure Serverless Serverless Managed service

Building a data

pipeline

Build a data pipeline using an

AWS Glue job written in Python

or /Scala and crawlers.

Build a data pipeline using the Step

Functions console. Possible to

integrate with non-supported services

using Lambda.

Workflows are created as DAGs, which

are defined within a Python file that

defines the DAG's structure as code.

Apply programming concepts

Knowledge of:

• Continuous integration and continuous

delivery (CI/CD) (implementation, testing,

and deployment of data pipelines)

• SQL queries (for data source queries and data

transformations)

• Infrastructure as code (IaC) for repeatable

deployments

• Distributed computing

• Data structures and algorithms

• SQL query optimization

Skills in:

• Optimizing code to reduce runtime for data

ingestion and transformation

• Configuring Lambda functions to meet

concurrency and performance needs

• Performing SQL queries to transform data and

meet data pipeline requirements

• Using Git commands to perform actions such as

creating, updating, cloning, and branching

repositories

• Using the AWS Serverless Application Model (AWS

SAM) to package and deploy serverless data

pipelines

• Using and mounting storage volumes from within

Lambda functions

Continuous integration and continuous delivery (CI/CD)

Develop and check-in

Build and test

Deploy automatically

Software release workflow AWS CodePipeline

AWS CodeCommit

AWS CodeBuild

AWS CodeDeploy

A pipeline helps you automate steps in your software delivery process, such as initiating automatic builds and

then deploying to Amazon EC2 instances.

Deploy an AWS Glue job with AWS CodePipeline CI/CD

This pattern is helpful in the situation where businesses, developers, and data engineers want to launch jobs as soon as

changes are committed and pushed to the target repositories. It helps achieve a higher level of automation and

reproducibility, therefore avoiding errors during the job launch and lifecycle.

The process on the right consists of these steps:

1. The developer or data engineer makes a modification

in the ETL code, commits, and pushes the change to

AWS CodeCommit.

2. The push initiates the pipeline.

3. The pipeline initiates a Lambda function, which calls

codecommit:GetFile on the repository and uploads the

file to Amazon Simple Storage Service (Amazon S3).

4. The Lambda function launches a new AWS Glue job

with the ETL code.

5. The Lambda function finishes the pipeline.

Optimizing AWS Lambda functions in your environment

Memory is the principal lever available to Lambda developers for controlling the performance of a function.

• The amount of memory also determines the amount of virtual CPU available to a function. Adding more memory

proportionally increases the amount of CPU, increasing the overall computational power available.

• If a function is CPU-, network- or memory-bound, then changing the memory setting can dramatically improve its performance.

• For example, 1000 invocations of a function that computes prime numbers may have the following average durations at different

memory levels:

AWS Lambda execution models

Amazon

DynamoDB
Amazon

SNS

/order

Amazon

S3

reqs

Amazon

Kinesis

changes

AWS Lambda

service

Amazon API

Gateway

Lambda

function
Lambda

function

function

Synchronous
(push)

Asynchronous
(event)

Stream
(Poll-based)

Best practices for preventing Lambda function timeouts

Verify that your Lambda function

has enough system resources

Verify that your Lambda function

is configured to work within the

maximum timeout settings of

any integrated AWS service

Configure provisioned

concurrency for your

Lambda function

The amount of network bandwidth and CPU allocated

to a Lambda function invocation is determined by the

function's memory configuration

An AWS Lambda function's maximum invocation

timeout limit is 15 minutes

Concurrency is the number of requests your function can

handle at the same time

Provisioned concurrency initializes a requested number

of runtime environments so that they're prepared to

respond immediately to your function's invocations

Infrastructure-as-code on AWS options

AWS

CloudFormation

CDK App
Source Code

Stack A
Template A

Template B

AWS

CloudFormation

Stack B

Parameterized

Template

Stack 1

Stack 2

AWS CloudFormation
Parameters and

intrinsic functions

AWS CDK

Put your infrastructure,

application code, and

configuration all in one

place

AWS Serverless Application Model (AWS SAM)

The AWS Serverless Application Model (AWS SAM) is an open-source framework that you can use
to build serverless applications on AWS.

Game Analytics Pipeline on AWS Example

Steps to Build

1. Build and test the codified infrastructure using the AWS Cloud

Development Kit (AWS CDK) to synthesize an AWS CloudFormation

template.

2. Initiate the CI/CD pipeline when infrastructure code changes are

committed to the AWS CodeCommit repository.

3. Store compiled infrastructure assets, such as a Docker container and

CloudFormation templates, in Amazon Elastic Container Registry

(Amazon ECR) and Amazon S3.

4. Deploy the infrastructure for integration and system testing into the

quality assurance (QA) AWS account using the CloudFormation

Stack.

5. Run automated testing scripts to verify that the deployed

infrastructure is functional inside an AWS CodeBuild project.

6. Deploy the tested infrastructure into the Production (PROD) AWS

account using the CloudFormation Stack

This architecture diagram shows the DataOps CI/CD pipeline for

centralized game analytics on AWS

Enable faster queries compared to row-oriented formats
like JSON

• Convert the format of your input data from JSON to columnar data format Apache Parquet or Apache ORC
before storing the data in Amazon S3.

• Works in conjunction to the transform features to convert other format to JSON before the data conversion

Amazon Connect

Kinesis Data Streams Kinesis Data Firehose Redshift

Spectrum

Amazon S3 Amazon AthenaAWS Glue Data Catalog

1

2 3

4
5

Agent Events

Firehose Output

Schema

Parquet

SQL query optimizations on Amazon Redshift

Amazon Redshift is built around industry-standard SQL, with added functionality to manage very large

datasets and support high-performance analysis and reporting of those data.

To maximize query performance, follow these recommendations when creating queries:

• Avoid using select *. Include only the columns you specifically need.

• Don't use cross-joins unless absolutely necessary. These joins without a join condition result in the Cartesian product of

two tables. Cross-joins are typically run as nested-loop joins, which are the slowest of the possible join types.

• Use subqueries in cases where one table in the query is used only for predicate conditions and the subquery returns a

small number of rows (less than about 200). The following example uses a subquery to avoid joining the LISTING table.

55

Thank you for attending
this session

